275

A Compositional Semantics for Statecharts*

J. Hooman
S. Ramesh!t
W. P. de Roever

Eindhoven University of Technology
Dept. of Mathematics and Computing Science
P.O. Box 513
5600 MB Eindhoven, The Netherlands

Abstract

Statecharts is a behavioral specification language proposed for specifying large real-
time, event driven, reactive systems. It is a graphical language based on finite state
machines extended with many features like hierarchy, concurrency and broadcast com-
munication. We give a compositional syntax and a denotational semantics for State-
charts.

1 Introduction

This paper concerns the semantics of a specification language for describing real-time re-
active systems. Real-time reactive systems usually run forever, interact continuously with
their environment, and have critical time requirements. Typical examples are telecommuni-
cation networks and avionic systems. Formal description of real-time reactive systems is an
important area of research judging by the sheer number of proposed specification languages
such as Statecharts [Har87,Har88], Esterel [BC85], Modecharts [JM89], Lustre [BCH85] and
Signal [GB86]. All these specification languages are based on operational descriptions that
characterize how a system evolves.

The behavioral specification language considered here is Statecharts [Har87]. Realizing
the intuitive and pictorial appeal of finite state machines, Statecharts has been designed on
the basis of such state machines. But it is free from the limitations of state machines, such
as sequentiality, unstructuredness and exponential growth of states when describing con-
currency. Indeed, Statecharts are double exponentially more succinct than state machines
(Harel). Quoting [Har88],

Statecharts=finite state machines+depth+orthogonality+broadcast communication.

*This work was supported by ESPRIT Project 937: Debugging and Specification of Ada Real-Time
Embedded Systems (DESCARTES).

!Supported by the Foundation for Computer Science Research in the Netherlands (NFI) with financial
aid from the Netherlands Organization for Scientific Research (NWO).

276

Depth is achieved in Statecharts by allowing super states containing substates or even
complete statecharts. When such a super state is exited all the computations inside are
terminated. Super states may consist of orthogonal sub-statecharts which are executed in
parallel. Orthogonal components interact with each other and with their environment by
means of events which are broadcast throughout the whole system. External events or events
generated in one component can cause new events in another component which, in turn, can
cause more events. Thus a single event can give rise to a whole chain of events all of which
are assumed to take place simultaneously; this assumption is essentially Berry’s synchrony
hypothesis [BC85] according to which a system is infinitely faster than its environment. It
facilitates the speciﬁcaiion task by abstracting from internal reaction times.

The synchrony hypothesis might introduce causal paradoxes like an event causing it-
self. In Esterel [BC85] causal paradoxes are syntactically disallowed whereas in Statecharts
causal relationships are respected and paradoxes are removed semantically. Real-time is
incorporated in Statecharts by having an implicit clock, by allowing transitions to be trig-
gered by time-outs relative to this clock and by requiring that if a transition can be taken
then it should be taken immediately.

1.1 Overview of our work

Our aim is to develop a compositional denotational semantics for Statecharts. This requires
syntactical operators for building large statecharts from smaller ones. Our compositional
semantics is based on a syntax for Statecharts which has been proposed in [HGR88]. Sec-
tion 2.1 first informally introduces Statecharts and Section 2.2 contains this syntax.

The denotations describe observable entities (i.e. the events generated by a statechart),
but also denote non-observable entities such as the causal relation between events. These
non-observable entities, which can be sensed by a suitable program context, are needed to
obtain a compositional semantics. In [HGR88] a compositional semantic model with mini-
mal amount of non-observable entities (i.e. a fully abstract semantics) has been presented.
This semantics forms the basis of our axiomatic system. The denotations of this semantics
are prefix-closed sets of linear histories; infinite computations are represented by all their
finite prefixes. Our semantics forms the basis for a proof system in which Statecharts are
related to property based specifications. In order to express liveness properties, we do not
use prefix closed sets. Our histories represent complete (possibly infinite) computations.
Section 3 contains the details of the modified semantic model.

2 Syntax

2.1 General overview

A statechart can be considered as a tree of states, with the root state as the initial state.
The leaves of the tree are basic states, like the states in a finite state machine. Other states

277

are super states containing their sons (in the tree) as substates. There are two types of
super states: AND-states and OR-states. For instance, the statechart in Figure 1 has root

rm)

~JE]
l
l

tmles)/b

J
N qja/{b,e}

Figure 1:

state A and leaves F, G, H,I,J and K. A is an OR-state, with substates B and C. B is an
AND-state (indicated by the dashed line) with D and E as its substates, called orthogonal
components, whereas C' is an OR-state having I, J and K as its substates. States are
entered/exited either explicitly by taking a transition or implicitly because certain other
states are entered/exited. Entering an AND-state (OR-state resp.) results in entering all
(ezactly one resp.) of its substates implicitly. In Figure 1: entering AND-state B results in
entering both D and F, entering OR-state C results in entering exactly one of its substates
I, J and K. Similarly, entering an orthogonal component of an AND-state results in
implicitly entering all other components of this AND-state. When entering a super state
the particular substate(s) which should be entered, is (are) marked by a default arrow,
drawn as a transition with no source state, e.g. the default arrow inside C pointing to
I} When the transition from J to H is taken, H is entered explicitly and B,D,E,F
are entered implicitly. Note that with a forked transition such as the one from K, more
than one orthogonal component can be entered explicitly. Transitions between orthogonal
components are not allowed (e.g. no transitions between F and H'). When a state is exited
all its substates are exited implicitly. Exiting an orthogonal component implies an implicit
exit of all its orthogonal partners. So the transition from H to C leads to an implicit exit
of D (and its substate F or G).

Transitions have labels of the form ‘event part/action part’? The event part is a boolean
expression involving atomic events g, b, e ,... - signals without measurable duration. These

!Unlike [Har87), we attach a default arrow to every super state; so also to AND-states.

For the sake of simplicity we do not consider the general syntax of labels given in [EPPSS87). There a

278

events can be generated by the outside world as an input to the statechart as well as by the
statechart itself. The event expression specifies when the transition is enabled. The action
part is a set of atomic events which are generated when the transition is taken (a singleton
is denoted by its element).

Execution in orthogonal components proceeds concurrently and events generated in one
component are broadcast throughout the system, possibly triggering new transitions in other
components. This will in general lead to a whole chain of transitions which, by the synchrony
hypothesis, take place simultaneously in a single (time) step. The set of transitions taken in
a step is a mazimal set in which there is at most one transition per orthogonal component
and there exists a causal relationship between transitions: each transition is enabled by
either external events or events generated by other transitions. The general idea is that
staying in a state takes some time, whereas taking a transition is instantaneous.

In our example the system can be in the states A, B, D, E, F and H simultaneously.
When a is generated externally in this configuration the transition from (and to) state H
will generate b, causing a transition from F to G which generates c.

A transitions with event part a is taken when a is generated somewhere in the system.
The meaning of a A b (resp. a v b) is: a transition with this event part is taken in a step if
both a and b (resp. a or b) are generated somewhere in the system in this step. Aisa special
event which occurs (by definition) in every step. tm(e,n) denotes a time-out event which
is generated at a particular step if n time steps earlier event e has happened. A transition
with event part —a is taken in a step if a is not generated at all during this step.® In our

syntax, negations are immediately succeeded by atomic events, time-outs or A.

2.2 Syntax of Statecharts

The objects obtained using our syntax are in general unfinished statecharts having arcs
without either source or target state. In the sequel we use the word statechart for both
unfinished and finished statecharts.

The primitive objects (see Figure 2.2) of our syntax are so called

e Basic Statecharts: [1,0, S], where S is a state name, I a set of incoming arcs and O
a set of outgoing arcs. Only the outgoing arcs are labeled with an event/action pair.

We have the following operators (let B be a basic statechart, U, Uy, U be statecharts, T,

Ty, T; be transition names and let a be the name of an atomic event):

label includes an additional condition part, variable assignments are allowed in action parts and there are
special events to signal entry and exit of a state. The proposed axiomatic system can be casily extended to
the general case.

3There are several possible interpretation of —a, here we take the app h tly ad ted by

Pnueli [PS88).

To

T

279

S)
7 (4.
_
§ 4
T 7
S 7

Figure 2: Basic Statechart [1,0, S}, with I = {T3,T, T3} and O = {T}, T~}

o Statification: Stat(B, U,T); makes (the state of) B a super state with U inside it and
the incoming transition T of U as its default.

T GoaTy - lrT;
L 4
72—% /5
Tz LN T
9 'S Tz/ 75
B (/4

5{4{(811(1 T)

Figure 3: Statification

e Or-construct: Or(U,,Us); leads to a statechart which becomes an OR-state after
statification.

e And-construct: And(Uy,U,); yields an AND-state after statification.

In the constructs above both constituents should not have joint incoming or joint outgo-
ing transitions with the same name, except for the AND-construct where joint incoming

transitions are allowed.

o Connect: Connect(U,Ty,T;); results in a chart identical to U except that outgoing
arc Ty and incoming arc T; of U are connected to form a single complete transition.

u Connect (U, T, T;

Figure 4: Connection

o]
<1

280

e Hide-Closure: HiCl(U,a); hides any generation of @ by U (Hiding) and makes U

insensitive to any a generated by the environment (Closure).

After the informal introduction into the syntax of Statecharts above, we give the formal syn-
tax. First we define the labels that can be associated with the transitions of any statechart

and the event expressions used in these labels.

2.2.1 Events

Let E, be a set of elementary/atomic events. The set of composite events Ezp is defined
inductively as the least set satisfying:

e A€ Ezp,~A € Ezp.
o ife € E, then e € Ezp, ~e € Ezp.
e ife € Exzp, n € N \ {0} then tm(e,n) € Ezp, ~tm(e,n) € Ezp.

o if e;,e2 € Exzpthen e; Ves € Ezp, e; A ez € Ezp.

2.2.2 Transition Labels

The set of all symbols that can label the transitions of a statechart is the set Lab defined
as follows:
Lab = {E/A| E € Ezp, A C E,, A is finite}

If A is a singleton set then we often use the event itself, i.e. E/a abbreviates E/ {a}.*

2.2.3 Formal Syntax of Statecharts

Let T be the set of all states (or more precisely state names) and 77 and Tp be the set of
all (names of) incoming and outgoing transitions of any statechart such that ;N 7o = ¢.
Also let L : To — Lab denote the labeling function that labels all the outgoing transitions.
Assume 7 = T3 U To and E, are countable.

The set of statecharts is defined by the following BNF-grammar, where a € E, I C 71,
O C To, I and O are finite, {T, T3} € 71, T € To, S € L.

U = Disj|Conj
Disj = Prim|Or(Disj,Disj) | Connect(Disj, Ty, T3)
Conj := And(Default,Default) | And(Default,Conj)
Prim := Basic| Default|{ HiCl(U,a)
Default = Stat(Basic,U,T)
Basic == [I,0,8]

*In the original syntax of labels as given in [HPPSS87), the action A is of the form 61,--,4a whereas
we take A to be the set containing these events.

281

2.2.4 Syntactic Restrictions

There are certain syntactic conditions to be satisfied by any statechart. In order to describe
these conditions we define two functions JN and OUT;; for a given statechart U, IN(U) and
OUT(U) are the sets of incoming and outgoing transitions of U, respectively.

IN ouT
i7,0,5] I o
Stat(B,U,T) | IN(B)UIN(U)\{T} | OUT(B)u OUT(V)
Connect(U, Ty, Ts) IN(U)\ {T2} OUT)\ {T1}

Oor(Uy,Uz) | IN(U)UIN(Uy) | OUT(Uy)UOUT(Us)
And(Uy,Us) | IN(U)UIN(U;) | OUT(U,)uOUT(Uy)
HiCl(U,a) IN(U) oUT(U)

Then we have the following syntactic restrictions:

For Connect(U,Th,T3): Ty € OUT(U) and T, € IN(U).

For Stat(B,U,T): T € IN(U), IN(B)NIN(U) = ¢, and OUT(B) " OUT(V) = g.
For Or(Us, Ua): IN(Uy) 0 IN(Uz) = & and OUT(Uy) 0 OUT(Us) = .

For And(U,,U,): OUT(U)nOUT(U,) = @.

Remarks:

1. In And(U;, Uz), the intersection of IN(U;) and TN (Uz) need not be empty. Incoming
arcs with identical names are ‘merged’.

2. In Stat(B,U,T), there should always be at least one incoming arc to U, to be taken
as the default.

3. The Concat operation given in [HGR88] has not been provided in our syntax. It can

be considered as a derived operation:
Concat(Uy, Uz, Th, T3) = Connect(Or(Uy, Us), Th, T3)-

3 Denotational Semantics

As mentioned in the introduction, the semantic model associates with a statechart the set of
all (maximal) computation histories representing complete computations. It has been shown
in [HGR88] that, besides denotations for events generated at each computation step (the
observables) and denotations for entry and exit, the following two additional denotations are
necessary and sufficient to obtain a compositional semantics: (1) a set of all events assumed
to be generated by the whole system (i.e. statechart together with its environment) at each
step and (2) a causality relation between generated events. More precisely, a computation
history h of a statechart U is of the form h = (3,1, f,0,s) where

e 5§ € N models the start step (N denotes the set of natural numbers).

282

e i € Ty U {»} is an incoming transition or x to model an implicit entry.

e f: N = {(F,C,<)|F C CCE. and < atotal order on C } records for every step n
a triple (F, C, <), where

- Fis a subset of the events generated by U. Considering the chain of transitions in
step n, F contains the events which are generated by U, for the first time in this

chain.

- C is the set of events generated by the total system (i.e. U and its environment) in
step n.

- < denotes the causal relationship between events generated by the whole system .
If a causes b then a < b. If there is no causal relation, then the semantics of U
will contain two histories: one with a < b and another with b < a.

o o€ To U {, 1} is an outgoing transition or * for an implicit exit, or L when there is
no exit.

e s € NU{oo} denotes the exit step.

Henceforth, h will denote (3,1, f,0,s) and similarly for super- and sub-scripts:

k' denotes (&', ', f',0',8'), hy denotes (31,11, f1,01,31), etc.

For a function f as above, the fields of f(n) are selected by fF(n), fS(n) and f<(n).
Define H={h|3<s, 0=l s=00,and (v<3Vv>s)— fF(v) =g}

Figure 5 shows why F is not equal to the set of all events generated by U. If a occurs

a/a y.4

Figure 5:

externally, then U; generates a at every step, whereas U, does not generate a. This differ-
ence can not be sensed, however, by other statecharts, because a is generated in the system
already. In order to get the same semantics for Uy and Uy, both have an empty F-set to
denote that both are not responsible for the first generation of a.

Our semantic domain is given by (D,C), where D = {H | H C H} and D, € D, iff
Dy C D, for all Dy, D; € D. It is easy to show that our domain is a complete lattice with
bottom element @ and top element H. We give the semantics of statecharts by defining a
semantic function M that maps any statechart to an element of D, 50 to a set of histories.

The semantics is an a priori semantics that anticipates an arbitrary environment.

283

Definition 3.1 (Basic) Any general computation history of a basic statechart [7,0, 5]
enters the chart implicitly (denoted by %) or via one of the arcs in I at a particular time
step and starts waiting to exit the statechart from the next step onwards. Then there are
three situations possible: it waits forever or it exits the chart at a finite step implicitly (also
denoted by «) or by taking one of the outgoing arcs in O; in the latter case, the necessary
condition for taking the transition should be true.

Using the predicates wait and fire, defined below, the semantics is given as follows.
M([1,0,8]))={heH|ie (JU{x})AVv,§ <v < s:wait(0,v)A

[e=L v(o=+A fF(s) = @)V fire(0,s)]}
Let the Iabel of an outgoing transition ¢t € O be given by: L(t) = E;/A,.

wait(O,v) characterizes the situation in which none of the transition in O can be taken.
Then none of the triggers of these transitions evaluate to true and no event is generated by
the statechart. Consequently, wait is defined as follows:

wait(0,v) = fF(v)=gA /\ -inC(Eg, v)
teo

where inC(E;, v) expresses that E, evaluates to true at step v. It is defined inductively as

follows:
inC(A,v) = true
inC(e,v) = e€ fC(v), fore€E.
inC(~e,v) = -inC(e,v)

inC(e; V ez, v)

inC(e1,v) vV inC(es,v)

inC(e; Aeg,v)

inC(e;,v) A inC(ea, v)
inCle,v—n) AV, v—-n < v <v:-inC(e,v') ifv2>n

false otherwise

inC(tm(e,n),v) = {

Predicate fire(O,v) describes the condition for taking a transition t € O at step v. Then its
trigger E; evaluates to true, so inC(E,,v) must hold and all the events in A, are generated.
Furthermore, certain causal relations exist between newly generated events and the events
that triggered the transition. These relations are expressed by predicate rel(E;, a, v}, defined
below. Consequently, fire is defined as follows:

fire(O,v) = V (o=t AinC(Ey,v)A fF(v) C A, C fC(v)A
teo

A a€ fF(v) - Tel(Eg, a, ”))
a€A,

Predicate rel(E;, a,v) provides the necessary causal relation between an event ¢ € A, and
the events in E,. For instance, if E; = b then we need (b,a) € f<(v), whereas for E; = -b

284

there should not be any relation between a and b because b does not occur in step v. We

define rel inductively as follows:

rel(A,a,v) = true
< .
rel(b,a,v) = (b,a) € f<(v), ifb#ea
false ifb=a
rel(tm(e,n),a,v) = i"C(im(e,n),u)
rel(me,a,v) = =inC(e,v)

rel(e, V e2,a,v) rel(ey,a,v) Vrel(ez,a,v)

rel(e; A e3,a,v)

rel(ey, a,v) A rel(ez,a,v)

Definition 3.2 (Or) The semantics of a Or construct is the union of the semantics of its
constituents.
M(OT(U], Uz)) = M(U))u M(Uz)

Definition 3.3 (Connect) Execution of Connect(U, Ty, T;) consists of first (a) entering
U via an arc other than T3, and then (b) taking transitions as specified by U, indefinitely,
or exiting U either via an arc other than Ty, or exiting via T\, re-entering U via T3, and
repeating (b). Given two sets of histories Dy, D, we define CONC(D,,D,,T),T>) (infor-
mally) as the set of (i) histories from D; which do not exit via Ty, and (ii) histories which
consist of a history from D, exiting via T; followed by a history from D; entering via T35

CONC(D,y,D:,T1,T3) =

{h|{h€Dyro#Th}U

{hlah;EDl,thth.i:@l/\SI =§As=8s3Ai=51 Ata=TaA

o =Tyno=oiAfF = fFUSFASC = fE = IF A<= 5 =I5}

Then M(Connect(U,Ty,T3)) can be obtained by removing the histories with a T entry
from the largest set satisfying D = CONC(M(U), D,Ty,T3), i.e., the greatest fixed point
vx.CONC(M(U), X,T1,T3)). (Note that such a set D will not contain histories which exit
via Ty, because a Ty-exit leads—by (b) above—to a T;-entry into U.) It is easy to see that
CONC is monotonic in its second argument and hence has a greatest fixed point in our
complete lattice (see e.g. [dB80]). This leads to

M(Connect(U, Ty, T3)) = delg,(vx CONC(M(U), X,Th,T2))
where delr, (D)= {h € D|h = (3,1, f,0,8)Ai # T3}
The semantics can also be given as the intersection of approximations:

M(Connect(U,Ty,Tz)) = del,({) D)
keN

with Do = M, and for k > 0: Dyyy = CONC(M(U), D, Ty, T3)).

BCONC stands for concatenation.

285

So the semantics consists of all those histories that exit and re-enter U through the connected
arc for a finite/infinite number of times. All the finite histories eventually exit U via an arc
other than 7.

Definition 3.4 (And) A history h from the semantics of And(U;,U;) is obtained by
combining h; from M(U;) and hy from M(U;), provided certain conditions are fulfilled.
Since all orthogonal components of an And-construct are entered and exited simultaneously,
the entry steps, §; and 3z, must be equal, and also the exit steps, s; and s;. Furthermore,
the claims in h; and h; about the total system—represented by the C and < components—
must be the same. The incoming transition in h, component i, can be either

e a *, denoting an implicit entry, if both {; and i, are *, or

¢ a joint incoming transition, so ¢t = §; = {3, or

o the incoming transition of one, provided the other is .

The o component in h, describing the way in which And(U,, Uy) is exited, can be either
e a *,if 0y = 03 = *, denoting an implicit exit, or
e an outgoing transition of one, provided the other is «, or
e a 1, to denote that And(U,, Us) is never exited, if both 0, and oz are L.

This leads to the following definition:

M(And(Uy,Uz)) = {h| 3h; € M(Ur),ha € M(U3): =38, = 52 As =35 = 53A
JO=IF = IS AIS= IS = JSASF = TG SEN
[(i=fi=d)V(i=i1Ada=%)V(i=1i2A 1 = %)]A
[(ec=01#L Aoz =%x)V(o=03#1L Aoy =+)Vo=0; = 0; =1]}

Definition 3.5 (Statification) The semanticsof Stet(B, U, T)is similar to M(And(B,U)),
except for the way in which the statified chart is entered; any entry to B leads to U via the

default arc T and the direct entry to T is no longer possible. Consequently, the semantics
is given as follows:

M(Stat(B,U,T))={h| Ik e M(B)hg e M(U):8=351 =353 A8 =5 = 53A
fO=fE=fENf<=fS= FSAIF = fFuSEA
[G=t1Ata=T)V(i=i2# TAi#xAip =*)]A
[(ec=01#LAog=%)V(o=02 #L Aoy =*)Vo=0, =0 =1]}

Definition 3.6 (Hide and Close) In the semantics of HiCI(U,a) we first require that
every occurrence of @ is generated by U. Thereafter a is hidden by allowing arbitrary
behaviour for it in the new histories as far as the C and < component are concerned, and
removing a from the F component. First we define the pointwise subtraction of a set-valued
function g and a set A, notation g— A, as follows, (¢ — A)(v) = g(v)— A, forallv € N. Fora
function f< s.t. f<(v) C E.x E, let f<|, be defined as f<|, = f<=(E.x{a})=({a} x E).
Then the semantics is given by

M(HICl(U,a)) = dela({h | h € M(U)AVv:a € f€(v) - a € fF(v)})

286

where delg(D)={he€H|IneD:§=4Ai=i1A0=01AS=5A
SF = fF 2 {a} A f<la = fRla A SC = {a} = £ = {a}}.

4 Related Work

A denotational semantics has been given for the graphical, state-based, specification lan-
guage Statecharts. This semantics serves as a basis for a compositional axiomatisation of
Statecharts in terms of a logic which is strong enough to express both safety and liveness
properties. In contrast with [HGR88], we did not aim at full abstractness; our purpose was
to give the semantics of a small subset of Statecharts while maintaining the essentials of a
event-driven synchronous language. The compositional syntax and the main primitives of
our denotations are derived from {[HGRB88]. An operational, non-compositional, semantics
for Statecharts has been given in [HPPSS87].

In [Gon88] a related denotational semantics has been given for the non-graphical syn-
chronous language Esterel. An operational description for this language can be found
in [BC8S5). Related real-time models have been given for extensions of CSP. [KSR*88] con-
tains a denotational semantics for a real-time version of CSP, based on the linear history
semantics of [FLP84]. Huizing extends the same model to achieve a fully abstract seman-
tics [HGR87] for an OCCAM-like language. Reed and Roscoe [RR88] give a hierarchy of
timed models for CSP, based on a complete metric space structure. A fully abstract timed
failure semantics for an extended CSP language has been developed in {GB87].

References

[BC85] B. Berry and L. Cosserat. The synchronous programming language Esterel and
its mathematical semantics. In Proceedings CMU Seminar on Concurrency,
pages 389-449. LNCS 197, Springer-Verlag, 1985.

[BCH85] J.-L. Bergerand, P. Caspi, and N. Halbwachs. Outline of a real-time data flow
language. In Proceedings IEEE Real-Time Systems Symposium, 1985.

(dB8o0] 1. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall,
1980.

[FLP84] N. Francez, D. Lehman, and A. Pnueli. A linear history semantics for dis-
tributed programming. Theoretical Computer Science, 32, 1984.

[GBS8S6) P. le Guernic and A. Benveniste. Real-time, synchronous, data-flow program-
ming: The language signal and its mathematical semantics. Technical Report
620, INRIA, Rennes, 1986.

[GB87] R. Gerth and A. Boucher. A timed failures model for extending communicating
processes. In Proceedings in the 14th International Colloguium on Automala,
Languages and Programming, pages 95-114. LNCS 267, Springer-Verlag, 1987.

[Gon8s)

[Har87)

[Har88}

[HGRS7]

[HGRS8)]

[HPPSS87]

[IM89)

[KSR*88)

[PS88)

[RRSS]

287

G. Gonthier. Sémantigues et modéles d’ezécution des langages réactifs syn-
chrones; Application ¢ ESTEREL. PhD thesis, University of Orsay, 1988.

D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, 1987.

D. Harel. On visual formalisms. Communications of the ACM, 31:514 - 530,
1988.

C. Huizing, R. Gerth, and W.P. de Roever. Full abstraction of a real-time
denotational semantics for an occaM-like language. In Proceedings of the 14th
ACM Symposium on Principles of Programming Languages, pages 223-237,
1987.

C. Huizing, R. Gerth, and W.P. de Roever. Modelling statecharts behaviour in
a fully abstract way. In Proceedings of the 13th Colloguium on Trees in Algebra
and Programming, pages 271-294. LNCS 299, Springer-Verlag, 1988.

D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. On the formal seman-
tics of Statecharts. In Proceedings Symposium on Logic in Computer Science,
pages 54-64, 1987.

F. Jahanian and A. Mok. Modechart, a specification language for real-time
systems. IEEE Transactions on Software Engineering, to appear, 1989.

R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and S. Arun-
Kumar. Compositional semantics for real-time distributed computing. Infor-
mation and Computation, 79(3):210-256, 1988.

A. Pnueli and M. Shalev. What is in a step. Draft, Department of Applied
Mathematics and Computer Science, The Weizmann Institute of Science, Re-
hovot, Israel, 1988.

G. Reed and A. Roscoe. Metric spaces as models for real-time concurrency. In
Proceedings of the Sth Workshop on the Mathematical Foundations of Program-
ming Languages Semantics 87, 1988.

